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Centralized active tracking of a Markov chain with
unknown dynamics

Mrigank Raman, Ojal Kumar, Arpan Chattopadhyay

Abstract—In this paper, selection of an active sensor subset
for tracking a discrete time, finite state Markov chain having an
unknown transition probability matrix (TPM) is considered. A
total of NV sensors are available for making observations of the
Markov chain, out of which a subset of sensors are activated
each time in order to perform reliable estimation of the process.
The trade-off is between activating more sensors to gather more
observations for the remote estimation, and restricting sensor
usage in order to save energy and bandwidth consumption. The
problem is formulated as a constrained minimization problem,
where the objective is the long-run averaged mean-squared error
(MSE) in estimation, and the constraint is on sensor activation
rate. A Lagrangian relaxation of the problem is solved by an
artful blending of two tools: Gibbs sampling for MSE minimiza-
tion and an on-line version of expectation maximization (EM) to
estimate the unknown TPM. Finally, the Lagrange multiplier is
updated using slower timescale stochastic approximation in order
to satisfy the sensor activation rate constraint. The on-line EM
algorithm, though adapted from literature, can estimate vector-
valued parameters even under time-varying dimension of the sen-
sor observations. Numerical results demonstrate approximately
1 dB better error performance than uniform sensor sampling
and comparable error performance (within 2 dB bound) against
complete sensor observation. This makes the proposed algorithm
amenable to practical implementation.

Index terms— Active tracking, sensor selection, stochastic
approximation, Gibbs sampling, on-line expectation maxi-
mization.

I. INTRODUCTION

Remote estimation of physical processes via sensor obser-
vations is an integral part of cyber-physical systems. These es-
timates are typically fed to some controller in order to control
a physical process or system. Typical applications of remote
estimation include object tracking, environment monitoring,
industrial process monitoring and control, state estimation in
smart grid, system identification and disaster management.
One key challenge is such remote estimation problems is
that the sensors are required to perform high-quality sensing,
control, communication, and tracking, but they are constrained
in terms of energy and bandwidth availability. Hence, it is
necessary to activate only the most informative sensor subset
at each time, so that a good compromise is achieved between
the fidelity of the estimates and energy/bandwidth usage by
Sensors.

Herein, we consider the problem of designing a low-
complexity algorithm for dynamically activating an optimal
sensor subset, that minimizes the time-averaged MSE under a
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Figure 1. Remote state estimation with active sensing.

sensor activation rate constraint reflecting a constraint on the
total energy consumed across sensors. The setup is centralized
in the sense that sensors directly report their observations to a
remote estimator; in distributed tracking, there can be multiple
nodes, each individually estimating a process, via information
exchanged over a multi-hop mesh network. In this paper, we
consider centralized tracking of a Markov chain with unknown
TPM, and solve the problem via a combination of Gibbs
sampling, stochastic approximation, and on-line EM. We also
work out the problem for the known TPM case. While these
algorithms are motivated by solid theoretical consideration,
numerical results demonstrate promising MSE performance
despite reduced complexity.

A. Literature survey

Active sensor subset selection for process tracking may
be either centralized or distributed. In centralized tracking,
sensors send observations to a remote estimator which esti-
mates the process. In distributed tracking, a number of nodes,
each having a number of sensors, constitute a connected,
multihop network; each node estimates the global state using
its local sensor observation and the information coming from
the adjacent nodes.

There have been considerable recent work on centralized
active tracking of a process with several applications; see [1]]
for application on sensor networks, [2] for mobile crowdsens-
ing, [3|] for body-area sensing application and [4] for target
tracking application. Even when the process does not have
time-variation, calculating the estimation error given sensor
observations and finding the best subset of sensors poses some
serious technical challenges. To address these challenges, the
authors of [1] provided a lower bound on performance, and
used a greedy algorithm for subset selection. On the other
hand, there have been a number of recent work on central-
ized active tracking of a time-varying process: [5]] for single
sensor selection by a centralized controller to track a Markov
chain, Markov decision process formulation for sensor subset
selection in [6] to track a Markov chain with known TPM,
energy aware active sensing [7]], existence and structure of
active subset selection policy under linear quadratic Gaussian



(LQG) model [8], active sensing for a linear process with
unknown Gaussian noise statistics via Thompson sampling [2],
etc. The paper [9] considered the model where an observation
is shared across multiple sensors. Recently, there have been a
series of work for i.i.d. process tracking: [10] using Gibbs
sampling based subset selection for an i.i.d. process with
known distribution, [11] for learning an unknown parametric
distribution of the process via stochastic approximation (see
[12]), and an extended version [13]] of these two papers. On
the other hand, the authors of [14] have proposed an algorithm
for distributed tracking a Markov chain with known TPM
using tools from stochastic approximation, Gibbs Sampling
and Kalman-consensus filter.

B. Our Contribution

Following points are our contribution in the paper:

1) We provide an online learning algorithm for active
sensing to track a Markov chain with unknown TPM.
The unknown TPM is learnt via online EM (see [15]),
suitably adapted for variable dimension of observations
due to active sensing. Gibbs sampling (see [16]) is
used for low-complexity sensor activation, and stochastic
approximation is used for meeting the sensor activation
constraint.

2) An interesting trick to handle variable dimension of ob-
servations was to maintain a global library of unknown
parameter estimates, and update only the relevant ones in
an asynchronous fashion, depending on sensor activation
and observation sequence. This idea was absent in the
online EM algorithm [[15]].

3) Another interesting feature of the algorithm which we
have proposed is running various iterates in multiple
timescales.

C. Organisation

We have organised our paper in the following manner. In
Section we have described system model. The necessary
mathematical background is summarised in Section In
Section we have provided active sensing, state estimation
and learning algorithms. Numerical results are provided in
Section |V|and finally we have conclusion in Section

II. SYSTEM MODEL

Bold capital and bold small letters will represent matrices
and vectors respectively, whereas sets will be represented by
calligraphic font throughout this paper.

A. Sensing and observation model

We consider a remote estimation setting as in Figure [I] The
set of sensors is ' = {1,2,3,..., N}. The sensors are used
to sense a discrete time process {(t)};>0, which is a time-
homogeneous positive recurrent Markov chain with ¢ states.
For the sake of mathematical convenience, we denote the j-th
state as e; which is the j-th standard basis (column) vector of
length ¢, with 1 at the j-th coordinate and 0 everywhere else.
Hence, the state space of {x(t)};>o becomes X := {e; :

j=1,2,---,q}. The TPM of {x(t)};>0 is denoted by A’
(transpose of A), which is unknown to the remote estimator.
Note that:

z(t+1)=Ax(t)+z(t+1) — Az(t) (1)
—_—
“w(t)

where w(t) is a zero-mean process noise (non-Gaussian).

At time ¢, let b(t) € {0,1}" denote the activation status
of N sensors; if bi(t) = 1, then the k-th sensor is active,
otherwise it is inactive. Let b_j(t) € {0,1}V~! be the same
as b(t), except that by(¢) is removed. Also, let (b_(t),0) be
the same as b(t) except that by(t) = 0, and let us assume
similar notation for (b_j(¢),1). An active sensor makes an
observation and communicates that observation to the remote
estimator, whereas an inactive sensor does neither of these.
If bp(t) = 1 and if x(¢t) = e;, then the observation yy(t)
from sensor k follows a Gaussian distribution as yg(t) ~
N(pri, Qri) € R™*1 Mathematically, we can write the
observation coming from sensor ¢ at time ¢ as:

Hk.’B(t) + ’Uk-<t) R bk(t) =1, CC(t) =e;
——
Yi(t) = ~N(0.Q1 1) 2
0, bk(t) =0
where Hy, = [pp1 : Mk Bigql € R™X9 ig

the observation matrix of sensor k, and wvi(t) denotes the
Gaussian observation noise at sensor k. We assume that vy, (¢)
is independent across sensors and time. We will consider the
cases where (i, ;, Qr,;) can be either known or unknown.

The collection of observations {yx(t) : bx(t) = 1,k € N'},
arranged as a column vector via vertical concatenation, is
called y(t). This y(t) is collected by the remote estimator to
estimate &(¢) at each time ¢. The estimate &(t) can be viewed
as a belief vector on X.

B. The optimization problem

Let 7, and 7o denote two generic rules (deterministic
or randomized) for sensor activation and process estimation,
respectively. In this paper, we seek to solve the following
problem:

T

ST EII(0) — ()|
t=0

- 1
min lim sup —
1,72 T—o00 T

T-1
1 _
such that  limsup — E E||b(t)|s < N 3)
T—o0 T =0

By standard Lagrange multiplier theory, problem (3) can be
solved by solving the following relaxed problem:

T—1
- 1 .
min limsup — " E||(&(t) — 2(t)[]* + Al[b(¢)][1)4)
71,72 T—00 T =0
under a suitable Lagrange multiplier A* such that the inequal-
ity constraint is met with equality.



III. BACKGROUND

In this section, we provide a basic background that will be
useful in solving (@).

Gibbs sampling: Let us assume (for the sake of illustration)
that x(t) is i.i.d. with known distribution. Then, there exists
an optimal b* such that, using b(t) = b* over the entire time
horizon along with MMSE estimation is optimal for (). Thus,
the problem reduces to:

min f(b) + Al|b]lx (5)
be{0,1} N oo ——

=h(b)

where f(b) is the MSE under sensor activation vector b,
and h(b) is the cost under this activation vector. In order
to avoid searching over 2"V possible activation vectors, the
authors of [[10] used Gibbs sampling for sensor activation.

Gibbs sampling generates a Markov chain {b(¢)}+>o whose
e—Bh(b) -

—ney With a

stationary distribution is 7g(b) =
. 2befo.)N © .
parameter 8 > O interpreted as the inverse temperature in

statistical physics. Note that, limg_,o 75(b*) = 1 if the
unique minimizer for h(-) is b* . Hence, for sufficiently large
B, Gibbs sampling under steady state selects b* with high
probability, and we obtain a near-optimal solution of @). At
any time ¢, Gibbs sampling randomly selects sensor k € N
with uniform distribution, and sets by (t) = 1 with probability

e~ Bh(b_i,1) .

P R S ) and b (t) = 0 otherwise. Then the k-
th sensor is activated accordingly, and the activation status
of other sensors remain unchanged. Finally, the constrained
problem (@) was solved by using a stochastic approximation
(see [12]) iteration A(t + 1) = \(t) + a(t)(||b(t)|]1 — N), to
satisfy the activation constraint.

Expectation maximization: The expectation maximization
(EM) algorithm (see [[17]]) is used to estimate an unknown
parameter 6 from noisy observation y of a random vector
x having a parametric distribution with unknown parameter
0. It maintains an iterate 6(t) at iteration t. In the E step,
E(log p(x|0)|y, 8(t)) is computed, and this is maximized over
6 to obtain O(t + 1) in the M step. It was shown in [[17]] that,
under certain regularity conditions, 6(t) converges to the set
of stationary points such that a%—(ey) = 0. Later, the authors of
[15] proposed one online EM algorithm for hidden Markov
model; their model is similar to our process and observation
models, except that they do not consider active sensing and
consider scalar observations of fixed dimension. However, due
to active sensing, our problem allows variable dimension of
observations, which requires some nontrivial modification of

the algorithm of [[15]].

IV. THE GEM ALGORITHM

In this section, we propose an algorithm called GEM (Gibbs
Expectation Maximization) to solve (3)). Since the algorithm is
technically involved, we will first describe the major compo-
nents and concepts related to the algorithm and finally provide
a summarised version of the complete algorithm.

A. Key components of the algorithm

1) Some useful notation:

Symbols Meaning
b(t) Activation status of N sensors
(D) Estimate of the cost of a sensor acti-

vation

. Running Estimate of Transpose of
Transition Probability Matrix

Cost and MSE estimates under activa-
tion vector b

A Running Estimate of mean and covari-
ance of y(t) where z(t) = e;

Running estimate of the observation
matrix [Hy : H):---: H}y]

blkdiag(Q1,:(t), Q2,(t), -+, Qn,i(t))

Running estimates of those compo-
nents of A, and W,(¢), that corre-
spond to the active sensors under ac-
tivation vector b(t)

The proposed algorithm maintains running estimates fty, ; (t)
and Qk,i(t) for py; and Qy 4, respectively. Equivalently, it
maintains an estimate A, of the matrix [HY : H} : --- : H}]
where Hy = [pg,1 @ Mr2 ¢ -+ @ Mgq). The algorithm also
maintains ¢ block-diagonal matrices {¥;(t) : 1 < i < ¢}
where W, (t) = blkdiag(Q1:(t), Qa.s(t),--- , Qn.i(t)) (block
diagonal matrix consisting of these N covariance matrix
estimates at time t). For an activation vector b, we also define
another matrix W0 (t) = blkdiag{Qy;(t) : 1 < k < N,by =
1} which can be extracted from W, (¢). Similarly, we define
f1(t) as an estimate of of the column vector vertcat(fi,; :
1 <k < N,b, = 1) (vertical concatenation of these column
vectors). Clearly, given x(t) = e; and activation vector b(t),
our algorithm assumes that y(t) ~ N([L?(t)(t),\il?(t)(t)).
For a given activation vector b we also define the matrix
MPO(t) = [ab(t) : ﬂg(f) : -+t [b(t)]. The algorithm also
maintains an estimate A; for A.

The algorithm also maintains the iterates h()(b)¥b €
{0,1}N, fO(b)¥b € {0,1}V, and A(t) (see Section [T},
as estimates of h(b)vb € {0,1}", f(b)vb € {0,1}", and
A*, respectively. Estimate of the MSE under activation vector
b can be denoted by f()(b)vb € {0,1}" at any time .
The quantities () (b)vd € {0,1}" are used as cost in
Gibbs sampling at time ¢ to decide the sensor activation
set. The Lagrange multiplier A(¢) is updated using stochastic
approximation so that the activation constraint in (3)) satisfies
the equality constraint.

We define vp(t) = S°0_ I{b(r) = b} as the number of
times the activation vector b is used up to time t.

2) Step sizes: The algorithm maintains two non-increasing,
positive step size sequences {«(t) : ¢ = 0,1,2,---} and
{7(t) :t=0,1,2,---} for running multi-timescale stochastic
approximation updates. The step size sequences satisfy the
following properties: (1) >~ s(t) = oo,s € {a,7v}, (ii)

Yoo 53(t) < 00,5 € {a,~}, (iii) limy—0 % = 0. The first



two requirements are standard for stochastic approximation.
The third condition is required for timescale separation; the
f®(.) update uses step-size «(t), and the A(t) update and
online EM updates will use step size (t).

3) Gibbs sampling: At time t, pick a random sensor j; € N

uniformly and independently. For sensor j;, choose b, (t) =
=B (b, (t-1),1)

1 with probability p, =

Bh(t)(b_] (t—1),1) e—/%h,(f)(b_jt(t—l),o)
and choose bj, (t) = 0 with probability (1—p;). For all k # 7,
we choose b (t) = bi(t — 1). Activate sensors according to
b(t) and obtain the observations y(t).

4) \(t) update: The Lagrange multiplier is updated as:

@) +~@)([[b(®)]l = N (6)

The iterates are projected onto an interval which is compact
namely [0,!] to ensure boundedness, where | > 0 is a
sufficiently large number. The intuition behind this approach is
that, if [|b(t)||; > N, then A(t) (the cost of a sensor activation)
is increased, and A(t) is decreased otherwise.

5) State estimation: We use a Kalman-like state estimator
from [6], designed to track a Markov chain. In this algo-
rithm, @®,,,; and &, denote the estimates of (¢ + 1) and
x(t) respectively, given {y(0),y(1),---,y(t)}; here & is
basically the final estimate @(¢) declared by the estimator
at time ¢, and @ is an intermediate estimate at time ¢.
Additionally, 3;; and 3;;_; will denote covariance matrices
estimates of the estimation and prediction errors (&4, — x(t))
and (&, —x(t)) respectively. Unlike standard Kalman filter
where the observation dimension is fixed, this Kalman-like
estimator has variable observation dimension depending on
b(t), and the gain and error covariance matrix updates also
take into account b(t) at time ¢.

At+1) =

State Estimation algorithm

Recursion: For each ¢t > 0, do:
1) :i:t|t71 = Aitfl\tfla
(Comment: State estimate at time ¢, keeping observations up to time
(t — 1) in account.)
2) Yy =M ()( )Z4)—1

3) 2t|t 1= dlag(wt\t 1) — th|t 1€Bt|t 1»
(Comment: Estimate of error covariance matrix at time ¢, keeping
observations up to time (¢ — 1) in account.)

4 By = T e ()87,
(Comment: Estimate of the observation noise covariance matrix under
activation vector b(t), averaged over the belief &,;_(.) on the state
of the process.)

5) Gy = 2t|t—1Mb(t) (t))/ *
(N5 (£) Sy (VPO (1) + %),
(Comment: Kalman gain update.)

6) Compute & = X1 + G (y(t) —
it on the probability simplex.
(Comment: State estimate at time ¢, keeping observations up to time

Yy|¢t—1), and project

(t — 1) in account. Projection ensures that the estimate is a valid
probability belief vector on the state space.)

7 By = dwg(wﬂt) - fEt|tiBt‘t
(Comment: Estimate of error covariance matrix at time ¢, keeping

observations up to time ¢ in account.)

6) f®(-) update: At time t, MSE estimate f(*)(-) (for sen-
sor subset b(t) only) is updated using the following equation:

FED(B) = [0 (B) + I{b = b(t) }ulvs (1) (Tr(Zyy0) — SO BNy (D)

7) Online EM for parameter estimation: Online EM re-
quires an initial distribution 7 for the Markov chain. However,
unlike [15[], here we have vector-valued observations whose
dimension change over time. Also, the unknown parameters
[, 5®) and \I’b(t) (known ub(t) and \Il b®) can be handled in a
stralghtforward way) will also have dlfferent dimensions for
different values of ¢. This requires an asynchronous update of
various components of the unknown parameters, depending on
the currently active sensors and their observations.

Since the online EM algorithm is heavy in notation, we have
made some explanatory comments in between the steps of the
algorithm. See [15] for a detailed understanding.

The algorithm  requires  the auxiliary functions
d), 09,84 and S9, and gi(ei,y). We also define
y*(t) = blkdiag{y.(t)y;(t) : 1 < k < N,bi(t) = 1}. In
general, we need y<(t) in the algorithm where d € {0, 1, 2};
we define y°(t) = 1(scalar), andy*(t) = y(t).

Online EM algorithm

Input: Initial distribution 7 of {x(t)}1>0, y(%).
Initialization: Initialize A, @1(0) for all 1 < i < ¢ and Ao
randomly and compute, for all 1 <<¢,j,k < gand 0 <d <2,

bo(k) = )90 ek, Yo)

m(k
Xq_: go(er, Yo)

P (i, 5, k) =0,

b}

p0.a(1, k) = diky®(0)
Recursion: Fort > 1, forall 1 < 14,5,k <gand 0 < d < 2,
DO

Approx. Filter Update
Z br—1(er,)A; (e, ex)gi—1(er, y(t))

2 3 diilen) A (en en)ge-(en, (D)

i) - )T 2]

where g;(e;,y) = exp[—(y — f;

(Comment: Here ¢¢(-) is interpreted as an estimate of the steady state
probability distribution of the Markov chain given all observations up to time

t.)

E-Step

1) ﬁf‘(z’,j,qm = Y()6kfe(ilf)  + (1 -
v(t))kZ_lﬁz“_l(i,xkl)ft(kllk)

2) pi 4(isk) = Y()daytt) + (1 -

ﬁgfl,d(i’ kl)f’t(kﬂk/’)



di_1(e) Ay (e e;)
7 - :
> de-a(ei) A (e, €5)

i1=1

where 7 (i|7) =

(Comment: ﬁf(~, +,+) ) and ﬁf’ 4 (-5 +) together constitute the expectation of a
sufficient statistic for the expected log-likelihood involved in the E step. The
sufficient statistic is updated over time using Bayes’ theorem. Details can be
found in [15]].)

M-Step
N q ~
1) SA(i,j) = kZ P (i, 4, k1) e (e,
1:1

’
2) At(ei7ej) = q N
Jji=1
(Comment: Update for the estimate of the transition probability
matrix.)
~ q ~
9 (5 — ~9 ;
3) St,d(z) - Z p@d(zv k1)¢t(ek1)
k=1
&g 7
~b(t) St,1(l)
Y =
Sy (1)
(Comment: Update for the estimate of the sensor observation mean
for subset b(t).)
g /-
St,2(7’) i
i — a9 M
Sto(i)

(Comment: Uf)date for the estimate of the sensor observation covari-

§o® _

5 ¥ ~b(t) (ﬂb(t))/

K2

ance for subset b(t).)

6) For every active sensor & such that by (¢) = 1 and for all
1 <4 < ¢, modify the values of fi; ;(t) in Ay_q and
Qr.i(t) in W,(t — 1) accordingly.

B. The complete algorithm

1) GEM algorithm: The complete GEM algorithm is out-
lined below.
The Complete GEM Algorithm
Input: {a(t)}i>0, {7(1)}i20, 7, N, 0 A
Initialization: Initialise b(0), A(0) > 0, Ao, f:(0) and
Qi (0) forall 1 <k <N,1<i<g,

fio\—l = Lo = 7.
Recursion: For all ¢ > 0, DO:

1) Use Gibbs Sampling described in Section [V-AJ| to
attain b(t), activate sensors accordingly, and collect the
corresponding observations y(t).

2) Update A(t) as in Section

3) Compute &(t) = @, as in Section by running
the Kalman-like algorithm.

4) Calculate f®(b(t)) as in Section

5) Calculate AT (b) = fE+D(B) + (¢t + 1)||b]|1

6) Compute the estimates A, fi,i(t) and Q;“(t) for all
1 <k < N,1 <1 < g, by using online EM as in
Section [V-AT7]

2) Discussion:

e« The GEM algorithm runs in multiple timescales (see
[12]). Gibbs sampling corresponds to the fastest
timescale, and the A(¢) update and online EM run in
the slowest timescale. Timescale separation is ensured by

limy oo % = 0.

o f (t)(~) update involves asynchronous stochastic approxi-

mation for various sensor subsets.

« Projection on [0,!] is done to make sure that all iterates

remain bounded.

3) Computational complexity of GEM for every time t:
At each time, Gibbs sampling and A(t) update require O(1)
computations. Updating f()(-) requires O(q) computations
for trace calculation. The approximate filter update step for
all states will require O(¢N? max;<p<n{n}}) computations
due to the matrix inversion involved in g¢;(-,-) calculation.
The first step in E step requires O(q*) computations. Com-
putational complexity of other steps of online EM as well as
state estimation is dominated by these two steps and hence
the computational complexity of online EM at each time is
O(gN3maxi<k<n{n3} + ¢*), where ny is the dimension
of yi(t) as defined before. The function h()(-) needs to
be computed only for three vectors as required by Gibbs
sampling, and hence this requires O(1) computations.

V. NUMERICAL RESULTS

We consider number of sensors N = 20, number of states
q = 10, activation constraint N = 5, inverse temperature 3 =
10, a(t) = %, ~(t) = % and A(0) = 0.1. The TPM A’ is
chosen randomly and then the rows are normalized to obtain
a stochastic matrix. The quantities {ftx ;, Qi f1<k<N,1<i<g
are also chosen randomly. We have not considered larger value
of N because it is unlikely (even in current cyber-physical
systems) that so many sensors estimate a single physical
process, especially when the observation from each sensor is
a vector.

Under this setting, we compare the performance of the

following six algorithms:

1) GEM-K: Here the observation mean and covariances are
known (i.e., K), but TPM is unknown.

2) GEM-UK: Here observation covariances are known, but
observation mean and TPM are unknown (i.e., UK).

3) GEM-FO: This is GEM Algorithm with full observation.
Here all the sensors are always active. The observation
mean and covariances are known, but the TPM is
unknown.

4) GEM-U: This is GEM Algorithm with uniform random
sampling of sensors: at each time ¢, a sensor is acti-

vated independently with probability E The observa-
tion mean and covariances are known, but the TPM is
unknown.

5) GEM-FI: This is GEM with full information of the TPM,
observation mean and covariances.

6) GEN: Here GEN stands for genie. At time ¢, the
estimator perfectly knows x(t — 1), but no observation
is available from sensors. In this case, the MSE will be
the limiting variance of x(t) given x(t — 1).

A. Convergence of the algorithms

Figure 2| shows the convergence of A, to A for GEM-
K. Similarly, we have noticed that A; converges to A for
GEM-FO and GEM-U. However, the TPM estimate does not
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converge to the true TPM for GEM-UK; instead, it converges
to some local optimum as guaranteed by the EM algorithm. For
all relevant algorithms, we have noticed that the mean number
of active sensors, calculated as %Zj—:l [|b(T)|]1, converges
to IN; this has been illustrated only for GEM-K algorithm in
Figure [3| and the corresponding A(¢) variation is shown in
Figure 4] We observe that A(t) converges at a slower rate.

B. Performance comparison

In Figure 5} we have compared the MSE performance of
various algorithms. We observe that, the TPM estimate in
GEM-K converges to the true TPM, and hence the asymptotic
MSE performance of GEM-K and GEM-FI are same. Hence,
we do not show the MSE performance of GEM-FI separately.
Figure [5] shows that, GEN has the best MSE performance
due to perfect knowledge of the previous state, and GEM-
UK has the worst MSE performance because it converges
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Figure 5. MSE performance comparison among various algorithms.

to a local optimum. GEM-FO performs better than GEM-
K because it uses more sensor observation, but it cannot
outperform GEN. GEM-U outperforms GEM-UK, since it has
knowledge of observation mean and covariances. However, we
note in multiple simulations that, on a fair comparison with
GEM-K, GEM-U performs worse by approximately 1 dB; this
shows the power of Gibbs sampling against uniform sampling.

We have repeated this for 10 different instances, and found
that the ordering of MSE performances across algorithms
remained unchanged, though the relative performance gaps
among the algorithms varied. However, performance gap of
GEM-K was observed to be within 2 dB of the MSE of GEM-
FO, and within several dB from the MSE of GEN. This shows
that GEM is very useful for tracking a Markov chain.

VI. CONCLUSIONS

We have provided a low-complexity active sensor selection
algorithm for centralized tracking of a Markov chain with



unknown transition probability matrix. The algorithm uses
Gibbs sampling, multi-timescale stochastic approximation,
online EM and Kalman-like state estimation to achieve a
good compromise among computational complexity, fidelity of
estimate, and energy and bandwidth usage in state estimation.
Performance of the algorithm has been validated numerically.
We seek to prove convergence of the proposed algorithm, and
also extend this work for distributed tracking problems in our
future research.
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